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Relativistic many-body calculations of atomic
properties in Pd-like ions1

U.I. Safronova, R. Bista, R. Bruch, and H. Merabet

Abstract: Wavelengths, transition rates, and line strengths are calculated for the 85 possible multipole transitions between
the excited 4p64d94f , 4p64d95l, 4p54d104f , and 4p54d105l states and the ground 4p64d10 state in Pd-like ions with the
nuclear charges ranging from Z = 47 to 100. Relativistic many-body perturbation theory (RMBPT), including the Breit
interaction, is used to evaluate energies and transition rates for multipole transitions in hole–particle systems. This method
is based on the relativistic many-body perturbation theory, agrees with MCDF calculations in lowest order, includes all
second-order correlation corrections, and includes corrections from negative energy states. The calculations start from a
[Zn]4p64d10 Dirac–Fock potential. First-order perturbation theory is used to obtain intermediate-coupling coefficients,
and second-order RMBPT is used to determine the matrix elements. The contributions from negative-energy states are
included in the second-order multipole matrix elements. The resulting transition energies and transition rates are compared
with experimental values and with results from other recent calculations. Trends of the transitions rates for the selected
multipole transitions as function of Z are illustrated graphically. The Z dependence of the energy splitting for all triplet
terms of the 4p64d94f and 4p64d95l configurations are shown for Z = 47–100.

PACS Nos.: 31.15.Ar, 31.15.Md, 32.70.Cs, 32.30.Rj, 31.25.Jf

Résumé : Nous avons calculé les longueurs d’onde, les taux de transition et les intensités de ligne pour les 85 transitions
multipolaires possibles entre les états excités 4p64d94f,4p64d95l et 4p54d105l et le fondamental dans des ions de type Pd
avec charge nucléaire Z = 47 à 100. Nous utilisons une théorie perturbative relativiste à N -corps (RMBPT), incluant une
interaction de Breit, pour évaluer les énergies et les taux des transition multipolaires dans ces systèmes à particules–trous.
Cette méthode est basée sur la théorie perturbative relativiste à N -corps ; elle agrée avec les calculs MCDF à l’ordre le
plus bas et inclut toutes les corrections de corrélation au second ordre, ainsi que les corrections pour les états d’énergie
négative. Les calculs débutent avec un potentiel de Dirac–Fock pour le [Zn]4p64d10. Nous utilisons d’abord la méthode
perturbative au premier ordre pour calculer les coefficients de couplage intermédiaire et ensuite RMBPT au deuxième
ordre pour déterminer les éléments de matrice. Les contributions venant des états d’énergie négative sont incluses dans
les éléments de matrice multipolaire au second ordre. Nous comparons avec d’autres calculs nos résultats pour les
énergies de transition et les taux de transition. Nous illustrons graphiquement en fonction de Z les tendances des taux de
transition pour les multipoles sélectionnés. Nous donnons aussi les énergies de séparation pour tous les termes triplets des
configurations 4p64d94f et 4p64d95l pour Z = 47 à 100.

[Traduit par la Rédaction]

1. Introduction

In the region of importance for extreme ultraviolet (EUV)
lithography (near 134 Å) the strongest lines were identified as
4d8–4d75p transitions in Xe XI. The most intense lines in Xe IX
were found to be the 4d10 1S0–4d94f 1P1 line at 120.135Å and
the 4d10 1S0–4d94f 3D1 line at 143.614 Å. Recent progress in
the development of sources for EUV lithography was presented
by O’Sullivan et al. in ref. 1. The emission of both Xe and Sn
were investigated as sources for EUV lithography. To design
extreme ultraviolet EUV sources for nanolithography, xenon
EUV emission were studied experimentally in a plasma gen-
erated by the interaction of a high-power laser with a droplet

jet [2]. Spectra from the Xe10+ ion were recorded at the Na-
tional Institute of Standards and Technology (NIST) electron
beam ion trap (EBIT) [3]. Experimental data on visible lines
produced by Xe18+ to Xe35+ ions, obtained at the Lawrence
Livermore National Laboratory (LLNL) EBIT were presented
in ref. 4. At the Berlin EBIT facility, the 37 individual lines for
Xe17+ to Xe25+ ions were registered in the range between 90
and 240 Å [5].

Atomic physics computations were performed using the He-
brew University Lawrence Atomic Code (HULLAC) to give a
detailed account of the transitions involved. The importance of
4p–4d, 4d–4f , and 4d–5p transitions was stressed in ref. 2.
Xenon spectra involving emission from ion species of Xe7+
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to Xe12+ were analyzed [6] for a plasma focus discharge de-
veloped for extreme ultraviolet lithography. Spectral analysis
based on Hartree–Fock calculations showed that the 4d–5p
transition arrays are fairly well-separated in wavelength for the
ions Xe8+ to Xe11+ [6]. The generation of EUV light by a novel
compact electron cyclotron resonance ion source (CECRIS)
is studied in ref. 7. High-resolution spectra were recorded in
the 10–16 nm range confirming significant contributions from
highly excited Xe10+ and Xe9+ ionic states. Spectral analysis
is based on Hartree–Fock calculations in ref. 7.

The importance of correlation and relativistic effects for the
4d–4f and 4d–5p electric-dipole transitions in Pd-like ions
was investigated recently by Safronova et al. in ref. 8. Rel-
ativistic many-body perturbation theory (RMBPT) method is
used in ref. 8 to evaluated excitation energies, line strengths,
oscillator strengths, and transition probabilities in Pd-like ions
with nuclear charges Z ranging from 49 to 100.

A detailed analysis of various transitions in Pd-like ions
was performed by Churilov et al. [9–13]. To predict the 4d10–
4d9(np + n′f ) transitions in Cd III–Cs X, relativistic HF cal-
culations using the Cowan code with scaling are carried out in
ref. 9. The 4d95l–4d95l′ spectra in Pd-like ions Sb VI, Te VII,
and I VIII were investigated in the 400–900 Å region using
vacuum spark sources as explained in ref. 10. Analysis of the
spectra of Pd-like ions from Xe IX through Ce XIII is performed
in ref. 11. Reference 12 gives the experimental results for the
4d95s, 4d95d, and 4d95p states in Cs X–Ce XIII ions with the
aid of high-resolution spectrographs supplemented by theoreti-
cal calculations carried out using the Cowan code and by fitting
with orthogonal operator techniques. The spectra of palladium-
like Pr13+ and Nd14+ ions excited in a laser-produced plasma
source in the 70–700 Å region are investigated in ref. 13. Al-
most all the energy levels of the 4d95s, 4d95p, 4d94f , 4d95d,
and 4d95f configurations in Pr XIV and Nd XV were deter-
mined experimentally. The experimental level energies were
described by Generalized Least Squares isoelectronic studies
of 4d95l configurations. It is emphasized in ref. 12 that ions of
the palladium isoelectronic sequence are currently of interest
for the development of X-ultraviolet (XUV) lasers.

The observation of XUV lasing at 41.81 nm on the 4d95d 1S0–
4d95p 1P1 transition in Pd-like Xe IX is reported by Lemoff
et al. in ref. 14. In ref. 15, the authors confirm the classifica-
tion in ref. 14 and adjust the energy level values involved in
the laser scheme structure. One hundred and nine transitions
were identified as combinations between levels of the 4d95d
with 4d95p and 4d95f configurations [15]. The energy param-
eters were obtained with Hartree–Fock relativistic calculations.
Least-squares parametric calculation were carried out to study
the fit between experimental and theoretical values [15]. The
radiation from Pd-like W28+ in the extreme ultraviolet spectral
region was investigated using a 2 m grazing-incidence spec-
trometer in conjunction with the Berlin EBIT [16]. The Pd-like
W28+ spectra are among other tungsten spectra from W25+ to
W36+ ions presented in ref. 16. An important part of the radia-
tion emitted by these ions was observed in range 40–70 Å and
was analyzed with the help of collisional-radiative line intensi-
ties using the HULLAC code [16].

The relative magnitudes of the electric-dipole (E1), the electric-
quadrupole (E2), the electric-octupole (E3), the magnetic-dipole
(M1), the magnetic-quadrupole (M2), and the magnetic-octupole
(M3) radiative decay rates, calculated using the multiconfigu-

ration DF approach, were presented in ref. 17 for the 4d94f ,
4d95s, and 4d95p states of Pd-like Yb24+, Hg34+, Th44+, and
U46+ ions.

In the present paper, RMBPT is used for the systematic
study of the atomic characteristics of transitions in Pd-like ions
with nuclear charge Z = 47–100. Specifically, we determine
the energies of 4p64d94f (J ), 4p64d95l(J ), 4p54d104f (J ),
and 4p54d105l(J ) states of Pd-like ions with nuclear charges
Z = 47–100. The calculations are carried out to second order
in perturbation theory. We consider the 4d, 4p holes and the
4f , 5s, 5p, 5d, and 5f particles leading to the 68 odd-parity
4p64d94f (J ), 4p64d95p(J ), 4p64d95f (J ), 4p54d105s(J ),
and 4p54d105d(J ) excited states as well as the 56 even-parity
4p64d95s(J ), 4p64d95d(J ), 4p54d104f (J ), 4p54d105p(J ),
and 4p54d105f (J ), excited states in Pd-like ions with Z = 47
to 100. RMBPT is also used to determine line strengths, os-
cillator strengths, and transition rates for all allowed and for-
bidden electric-multipole and magnetic-multipole (E1, E2, E3,
M1, M2, M3) transitions from 4p64d94f (J ), 4p64d95l(J ),
4p54d104f (J ), and 4p54d105l(J ) excited states to the ground
state in Pd-like ions. Retarded E1, E2, and E3 matrix elements
are evaluated in both length and velocity forms. A detailed dis-
cussion of the various contributions to the dipole matrix ele-
ments and energy levels is given for palladium-like xenon (Z =
54), which plays an important role in laser-produced plasma
[2], Z-pinch plasma [18–20], gas-discharge plasma [21–26] for
EUV lithography applications.

2. Method
Details of the RMBPT method are presented in ref. 27 for cal-

culation of the energies of particle–particle states, in ref. 28 for
calculation of energies of hole–particle states, in ref. 29 for cal-
culation of radiative electric-dipole rates in two-particle states,
in refs. 28 and 8 for calculation of radiative electric-dipole rates
in hole–particle states, and in refs. 30–33 for calculation of ra-
diative electric-dipole, electric-quadrupole, electric-octupole,
magnetic-dipole, magnetic-quadrupole, and magnetic-octupole
rates in Ne- and Ni-like systems. Here, we present only the
model space for Pd-like ions without repeating the detailed dis-
cussions given in refs. 27–33. The calculations are carried out
using sets of basis Dirac–Fock (DF) orbitals. The orbitals used
in the present calculation are obtained as linear combinations of
B-splines. These B-spline basis orbitals are determined using
the method described in ref. 34. We use 50 B-splines of order
10 for each single-particle angular momentum state, and we
include all orbitals with orbital angular momentum l ≤ 9 in our
basis set.

For atoms with one hole in closed shells and one electron
above the closed shells, the model space is formed from hole–
particle states of the type a+

v aa|0〉 where |0〉 is the closed-shell
[Zn]4p2

1/24p4
3/24d4

3/24d6
5/2 ground state, and a+

i and aj are
creation and annihilation operators, respectively. The single-
particle indices v and a designate the valence and core states,
respectively. For our study of low-lying states, 4l−1nl′ states of
Pd-like ions, the values of a are 4p1/2, 4p3/2, 4d3/2, and 4d5/2,
while the values of v are 4f5/2, 4f7/2, 5s1/2, 5p1/2, 5p3/2, 5d3/2,
5d5/2 5f5/2, and 5f7/2.

In Fig. 1, we plot one-electron DF energies of the 4f7/2, 5s1/2,
5p3/2, 5d5/2, and 5f7/2 states as functions of Z. The 4f7/2
orbital is less tightly bound than the 5s1/2, 5p3/2, and 5d5/2
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Table 1. Possible hole–particle states in the 4lj4fj ′ and 4lj5l′j ′ complexes; jj and LS coupling schemes.

Odd-parity states

J = 0, 5, 6 J = 1 J = 2 J = 3 J = 4

jj coupl. LS coupl. jj coupl. LS coupl. jj coupl. LS coupl. jj coupl. LS coupl. jj coupl. LS coupl.

4d3/25p3/2(0) 4d5p 3P0 4d5/25p3/2 4d5p 3P 4d5/25p1/2 4d5p 3P 4d5/25p1/2 4d5p 3F 4d5/25p3/2 4d5p 3F

4d5/24f5/2(0) 4d4f 3P0 4d3/25p1/2 4d5p 1P 4d5/25p3/2 4d5p 3F 4d5/25p3/2 4d5p 3D 4d5/24f5/2 4d4f 3H

4d5/25f5/2(0) 4d5f 3P0 4d3/25p3/2 4d5p 3D 4d3/25p1/2 4d5p 1D 4d3/25p3/2 4d5p 1F 4d5/24f7/2 4d4f 3F

4p1/25s1/2(0) 4p5s 3P0 4d5/24f5/2 4d4f 3P 4d3/25p3/2 4d5p 3D 4d5/24f5/2 4d4f 3F 4d3/24f5/2 4d4f 1G

4p3/25d3/2(0) 4p5d 3P0 4d5/24f7/2 4d4f 3D 4d5/24f5/2 4d4f 3P 4d5/24f7/2 4d4f 3D 4d3/24f7/2 4d4f 3G

4d5/24f5/2(5) 4d4f 3H5 4d3/24f5/2 4d4f 1P 4d5/24f7/2 4d4f 1D 4d3/24f5/2 4d4f 3G 4d5/25f5/2 4d5f 3F

4d5/24f7/2(5) 4d4f 1H5 4d5/25f5/2 4d5f 3P 4d3/24f5/2 4d4f 3D 4d3/24f7/2 4d4f 1F 4d5/25f7/2 4d5f 1G

4d3/24f7/2(5) 4d4f 3G5 4d5/25f7/2 4d5f 3D 4d3/24f7/2 4d4f 3F 4d5/25f5/2 4d5f 3F 4d3/25f5/2 4d5f 3H

4d5/25f5/2(5) 4d5f 3H5 4d3/25f5/2 4d5f 1P 4d5/25f5/2 4d5f 3P 4d5/25f7/2 4d5f 1F 4d3/25f7/2 4d5f 3G

4d5/25f7/2(5) 4d5f 3G5 4p3/25s1/2 4p5s 1P 4d5/25f7/2 4d5f 1D 4d3/25f5/2 4d5f 3D 4p3/25d5/2 4p5d 3F

4d3/25f7/2(5) 4d5f 1H5 4p1/25s1/2 4p5s 3P 4d3/25f5/2 4d5f 3D 4d3/25f7/2 4d5f 3G

4d5/24f7/2(6) 4d4f 3H6 4p3/25d3/2 4p5d 3P 4d3/25f7/2 4d5f 3F 4p3/25d3/2 4p5d 3F

4d5/25f7/2(6) 4d5f 3H6 4p3/25d5/2 4p5d 1P 4p3/25s1/2 4p5s 3P 4p3/25d5/2 4p5d 3D

4p1/25d3/2 4p5d 3D 4p3/25d3/2 4p5d 3D 4p1/25d5/2 4p5d 3F

4p3/25d5/2 4p5d 1D

4p1/25d3/2 4p5d 3F

4p1/25d5/2 4p5d 3P

Even-parity states

J = 0, 5 J = 1 J = 2 J = 3 J = 4

jj coupl. LS coupl. jj coupl. LS coupl. jj coupl. LS coupl. jj coupl. LS coupl. jj coupl. LS coupl.

4d3/25d3/2(0) 4d5d 3P0 4d3/25s1/2 4d5s 3D 4d5/25s1/2 4d5s 3D 4d5/25s1/2 4d5s 3D 4d5/25d3/2 4d5d 3G

4d5/25d5/2(0) 4d5d 1S0 4d5/25d3/2 4d5d 3S 4d3/25s1/2 4d5s 1D 4d5/25d3/2 4d5d 3D 4d5/25d5/2 4d5d 3F

4p3/25p3/2(0) 4p5p 1S0 4d5/25d5/2 4d5d 1P 4d5/25d3/2 4d5d 3D 4d5/25d5/2 4d5d 1F 4d3/25d5/2 4d5d 1G

4p1/25p1/2(0) 4p5p 3P0 4d3/25d3/2 4d5d 3P 4d5/25d5/2 4d5d 3P 4d3/25d3/2 4d5d 3G 4p3/24f5/2 4p4f 3G

4d5/25d5/2(5) 4d5d 3G5 4d3/25d5/2 4d5d 3D 4d3/25d3/2 4d5d 1D 4d3/25d5/2 4d5d 3F 4p3/24f7/2 4p4f 3F

4p3/24f7/2(5) 4p4f 3G5 4p3/25p1/2 4p5p 3S 4d3/25d5/2 4d5d 3F 4p3/25p3/2 4p5p 3D 4p1/24f7/2 4p4f 1G

4p3/25f7/2(5) 4p5f 3G5 4p3/25p3/2 4p5p 1P 4p3/25p1/2 4p5p 3D 4p3/24f5/2 4p4f 3D 4p3/25f5/2 4p5f 3G

4p1/25p1/2 4p5p 3D 4p3/25p3/2 4p5p 3P 4p3/24f7/2 4p4f 1F 4p3/25f7/2 4p5f 3F

4p1/25p3/2 4p5p 3P 4p1/25p3/2 4p5p 3D 4p1/24f5/2 4p4f 3G 4p1/25f7/2 4p5f 3G

4p3/24f5/2 4p4f 3D 4p3/24f5/2 4p4f 3D 4p1/24f7/2 4p4f 3D

4p3/25f5/2 4p5f 3D 4p3/24f7/2 4p4f 1D 4p3/25f5/2 4p5f 3D

4p1/24f5/2 4p4f 1D 4p3/25f7/2 4p5f 1F

4p3/25f5/2 4p5f 3D 4p1/25f5/2 4p5f 3G

4p3/25f7/2 4p5f 1D 4p1/25f7/2 4p5f 3D

4p1/25f5/2 4p5f 3F
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Fig. 1. One-electron Dirac–Fock energies (E/(Z − 35)2 in cm−1)
of 4fj and 5lj states as functions of Z.

orbitals at low stages of ionization, while 4f orbitals are more
tightly bound than the 5d , 5p, and 5s orbitals for ions with Z =
54, 58, and 62, respectively. Competition between the 4f and
5d, 5p, and 5s orbitals leads to problems for RMBPT, making
it difficult to obtain very accurate excitation energies and line
strengths for the transition between the low-lying 4d94f and
4d95l excited states and the ground state. Collapse of the 4f
orbital for Xe-like ions was investigated by O’Sullivan [35] and
Cheng and Froese-Fischer [36].

To obtain orthonormal model states, we consider the coupled
states �JM(av) defined by

�JM(av) = √
(2J + 1)

∑

mamv

(−1)jv−mv

× (
jv J ja − mv M ma

)
a†
vmv

aama |0〉 (1)

Combining the 4pj , 4dj hole orbitals and the 4fj , 5sj , 5pj , 5dj ,
5fj particle orbitals, we obtain 68 odd-parity states consisting
of 5 J = 0 states, 14 J = 1 states, 17 J = 2 states, 14 J = 3
states, 10 J = 4 states, six J = 5 states, and two J = 6
states. Additionally, there are 56 even-parity states consisting
of 4 J = 0 states, 11 J = 1 states, 15 J = 2 states, 14 J = 3
states, 9 J = 4 states, and three J = 5 states. The distribution
of the 124 states in the model space is summarized in Table 1. In
Table 1, we give both jj and LS designations for hole–particle
states. Instead of using the 4l−1

j nl′
j ′ or 4l−1nl′ designations, we

use simpler designations 4lj nl′
j ′ or 4lnl′ in this table and in all

the following tables and the text below.

3. Excitation energies

3.1. Example: Energy matrix for Xe8+

In Table 2, we give the various contributions to the second-
order energies for the special case of Pd-like xenon, Z = 54.
In Table 2, we show the one-body and two-body second-order
Coulomb contributions to the energy matrix labeled E

(2)
1 and

E
(2)
2 , respectively. The corresponding Breit–Coulomb contri-

butions are given in columns headed B
(2)
1 and B

(2)
2 of Table 2.

Fig. 2. Second-order one-particle contributions to the energies
(a.u.) as functions of Z.

The one-body second-order energy is obtained as a sum of the
valence E

(2)
v and hole E

(2)
a energies with the latter being the

dominant contribution. The second-order one-particle E
(2)
v and

one-hole E
(2)
a contributions are defined by three terms: dou-

ble sums, single sums, and a one-potential term (see eq. (2.7) in
ref. 28).The second-order two-body contributionE

(2)
2 is defined

by four terms: double sums, single sums, random-phase approx-
imation (RPA), and one-potential terms (see eqs. (2.8)–(2.11)
in ref. 28). All of the expressions in ref. 28 were defined for the
Coulomb interaction. When we include the Breit interaction in
the calculation, the Coulomb matrix element Xk(ab,cd) is ex-
changed by magnetic radial integrals Mk(ab,cd) and Nk(ab,cd)
defined by eqs. (A4) and (A5) in ref. 37.

The values of E
(2)
1 and B

(2)
1 are nonzero only for diago-

nal matrix elements. Although there are 124 diagonal and 1494
nondiagonal matrix elements for the 4lj 4fj ′ (J ) and 4lj 5l′

j ′ (J )

hole–particle states, we list only the part of even-parity subset
with J = 2 in Table 2. The second-order Breit–Coulomb cor-
rections are relatively large and, therefore, must be included
in accurate calculations. The values of nondiagonal matrix ele-
ments given in columns headed E

(2)
2 and B

(2)
2 are comparable

with values of diagonal two-body matrix elements. However,
the values of one-body contributions, E

(2)
1 and B

(2)
1 , are larger

than the values of two-body contributions, E
(2)
2 and B

(2)
2 , re-

spectively. As a result, total second-order diagonal matrix ele-
ments are much larger than the nondiagonal matrix elements,
which are shown in Table 2.

In Fig. 2, we illustrate the Z dependence of the second-order
hole (4p, 4d) energies E

(2)
a and valence (4f , 5s, 5p, 5d) en-

ergies E
(2)
v in Pd-like ions. As we see from Fig. 2, E

(2)
v slowly

increases with Z for valence contributions; however, the E
(2)
a

decreases with Z for hole contributions. The value of E
(2
a for

the 4p hole state is very large for low-Z ions. The importance of
the including of the 4p54d10nl states in the basis set of orbitals
for atomic structure Cowan code was underlined by Churilov
et al. in refs. 10–13. We observe several sharp features in the
curves describing the 5d5/2 state (Z = 74) and the 4p3/2 state
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Table 2. Second-order contributions to the energy matrices (a.u.) for even-parity
states with J = 2 in the case of Pd-like xenon, Z = 54. One- and two-body
second-order Coulomb and Breit–Coulomb contributions are given in columns
labeled E

(2)
1 , E

(2)
2 , B

(2)
1 , and B

(2)
2 , respectively.

Coulomb interaction Breit–Coulomb corr.

4l1j1 nl2j2, 4l3j3 nl4j4 E
(2)
1 E

(2)
2 B

(2)
1 B

(2)
2

4d5/25s1/2 4d5/25s1/2 −0.108864 0.030810 0.009448 0.000592
4d5/25d5/2 4d5/25d5/2 −0.063417 0.000720 0.010656 0.000310
4p3/25p3/2 4p3/25p3/2 −0.225446 0.013871 0.011761 0.000506
4p3/24f5/2 4p3/24f5/2 −0.248315 0.076271 0.008905 0.000810
4p3/25f5/2 4p3/25f5/2 −0.190703 0.011807 0.012376 −0.000136
4d3/25s1/2 4d3/25d5/2 0.000000 −0.002403 0.000000 0.000002
4d3/25d5/2 4d3/25s1/2 0.000000 −0.000354 0.000000 −0.000015
4d5/25s1/2 4p3/25p1/2 0.000000 −0.035357 0.000000 −0.000045
4p3/25p1/2 4d5/25s1/2 0.000000 −0.144028 0.000000 0.000173

Table 3. Contributions to the energy matrix E[4l1j1 nl2j2, 4l3j3 nl4j4] = E(0) + E(1) + E(2) +
B

(1)

hf + B(2) before diagonalization. These contributions are given for a hole–particle ion with a
[Zn]4p64d10 core, in the case of even-parity states with J = 2, and Z = 54.

4l1j1 nl2j2, 4l3j3 nl4j4 E(0) E(1) B
(1)

hf E(2) B(2)

4d5/25s1/2 4d5/25s1/2 2.782935 −0.643533 −0.003992 −0.076987 0.009894
4d5/25d5/2 4d5/25d5/2 4.177776 −0.503341 −0.006092 −0.062698 0.010967
4p3/25p3/2 4p3/25p3/2 6.752066 −0.584162 −0.012683 −0.211574 0.012268
4p3/24f5/2 4p3/24f5/2 7.368658 −0.820717 −0.013878 −0.172043 0.009715
4p3/25f5/2 4p3/25f5/2 8.377342 −0.431353 −0.014818 −0.178896 0.012240
4d3/25s1/2 4d3/25d5/2 0.000000 0.022143 0.000007 −0.002403 0.000002
4d3/25d5/2 4d3/25s1/2 0.000000 0.022143 0.000007 −0.000354 −0.000015
4d5/25s1/2 4p3/25p1/2 0.000000 −0.030205 −0.000009 0.005336 0.000020
4p3/25p1/2 4d5/25s1/2 0.000000 −0.030205 −0.000009 0.021929 −0.000016

(Z = 51). The origin of these singularities is associated with
the fact that the n = 4 shell is not filled in Pd-like ions; such
singularities are not present in the one-electron spectra of Li-
like, Na-like, or Cu-like ions, where the n = 1, n = 2, and
n = 3 shells, respectively, are filled. These singularities occur
when the 4d105dj levels cross excited even-parity levels of the
4d94f 2 configuration. At all such crossings, energy denomi-
nators in the expression for E(2) vanish and the perturbation
expansion fails. To remove these irregularities, it would be nec-
essary to base the perturbative treatment on a lowest order wave
function that includes both one-particle and two-particle one-
hole states, a treatment that is beyond the scope of the present
paper. Away from these crossings, the perturbation expansion
works well, as seen by the close agreement of our results with
available experimental data.

In Table 3, we present results for the zeroth-, first-, and
second-order Coulomb contributions, E(0), E(1), and E(2), and
the first- and second-order Breit–Coulomb corrections, B(1)

hf and

B(2). The importance of the correlation contribution is evident
from Table 3; the ratio of the first and zeroth orders (E(1)/E(0)) is
about 5–20%, and the ratio of the second and first (E(2)/E(1)) or-
ders is even larger, 15–40%. It should be noted that corrections
for the frequency-dependent Breit interaction [37] are included
in the first order only. The difference between the first-order

Breit corrections calculated with and without frequency depen-
dence is 1–3%, however, the ratio of the first-order Breit and
Coulomb corrections is also 1–3%. As one can see from Ta-
ble 3, the ratio of nondiagonal and diagonal matrix elements is
larger for the first-order contributions than for the second-order
contributions. Another difference in the first- and second-order
contributions is the symmetry properties: the first-order non-
diagonal matrix elements are symmetric, but the second-order
nondiagonal matrix elements are not symmetric. The values
of E(2)[a′v′(J ), av(J )] and E(2)[av(J ), a′v′(J )] matrix ele-
ments differ in some cases by a factor 2–3 and occasionally
have opposite signs.

We now discuss how the final energy levels are obtained
from the above contributions. To determine the first-order en-
ergies of the states under consideration, we diagonalize the
symmetric first-order effective Hamiltonian, including both the
Coulomb and Breit interactions. The first-order expansion co-
efficient CN [av(J )] (often called a mixing coefficient) is the
N th eigenvector of the first-order effective Hamiltonian, and
E(1)[N ] is the corresponding eigenvalue. The resulting eigen-
vectors are used to determine the second-order Coulomb cor-
rection E(2)[N ], the second-order Breit–Coulomb correction
B(2)[N ], and the quantum electrodynamic (QED) correction
ELamb[N ].
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Table 4. Energies of Pd-like xenon for even-parity states with J = 2 relative to the
ground state. E(0+1) ≡ E(0) + E(1) + B

(1)

hf .

jj coupl. LS coupl. E(0+1) E(2) B(2) ELAMB Etot

4d5/25s1/2 4d5s 3D2 2.12839 −0.08004 0.00990 0.00339 2.06163
4d3/25s1/2 4d5s 1D2 2.20532 −0.07135 0.01004 0.00384 2.14786
4d5/25d3/2 4d5d 3D2 3.64080 −0.06063 0.01104 −0.00030 3.59090
4d5/25d5/2 4d5d 3P2 3.66926 −0.05903 0.01097 −0.00021 3.62099
4d3/25d3/2 4d5d 1D2 3.73810 −0.06420 0.01113 0.00023 3.68525
4d3/25d5/2 4d5d 3F2 3.74327 −0.06332 0.01113 0.00024 3.69131
4p3/25p1/2 4p5p 3D2 6.04308 −0.20703 0.01241 −0.00120 5.84725
4p3/25p3/2 4p5p 3P2 6.15826 −0.21462 0.01229 −0.00092 5.95501
4p1/25p3/2 4p5p 3D2 6.44057 −0.19842 0.00973 −0.00115 6.25074
4p3/24f5/2 4p4f 3D2 6.59410 −0.19505 0.01169 −0.00040 6.41034
4p3/24f7/2 4p4f 1D2 6.62545 −0.17095 0.01152 −0.00059 6.46542
4p1/24f5/2 4p4f 1D2 7.03397 −0.27274 0.01081 −0.00020 6.77184
4p3/25f5/2 4p5f 3D2 7.94759 −0.19762 0.01232 0.00115 7.76344
4p3/25f7/2 4p5f 1D2 7.97193 −0.19119 0.01228 0.00117 7.79419
4p1/25f5/2 4p5f 3F2 8.43004 −0.22252 0.01340 0.00011 8.22104

Fig. 3. Mixing coefficients for the 4d5d 3D1 and 4d5s 3D2 levels as functions of Z. Q = 4d5d 3D1 and Q = 4d5s 3D2 for the left and
right panels of the figure, respectively.

Fig. 4. Energies E/(Z −35)2 in cm−1 for the even- and odd-parity states in Pd-like ions shown on the left and right panels of the figure,
respectively.
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In Table 4, we list the following contributions to the energies
of 13 excited states in Xe8+: the sum of the zeroth- and first-
order energies E(0+1) = E(0) + E(1) + B

(1)
hf , the second-order

Coulomb energy E(2), the second-order Breit–Coulomb correc-
tion B(2), the QED correction ELAMB, and the sum of the above
contributions Etot. The QED correction is approximated as the
sum of the one-electron self energy and the first-order vacuum-
polarization energy. The screened self-energy and vacuum po-
larization data given by Kim et al. [38], which are in close
agreement with the screened self-energy calculations by Blun-
dell [39], are used to determine the QED correction ELAMB.

When starting calculations from relativistic DF wave func-
tions, it is natural to use jj designations for uncoupled energy
matrix elements; however, neither jj nor LS coupling describes
the physical states properly, except for the single-configuration
state 4d5/24g9/2(7) ≡ 4d4g 3I7. Both designations are used
in Table 4. We have already mentioned the importance of in-
cluding the correlation contribution to obtain accurate energy
values for Pd-like ions. The second-order Coulomb contribu-

tion E(2) gives 2–3% to the total values of energies in the case
of Xe8+ ion (compare the values with headings E(2) and E(0)

in Table 4).

3.2. Z-dependence of eigenvectors and eigenvalues in
Pd-like ions

In Figs. 3 and 4, we illustrate the Z-dependence of the eigen-
vectors and eigenvalues of the 4dj 4fj ′ (J ) and 4lj 5l′

j ′ (J )

hole–particle states. We refer to a set of states of the same par-
ity and the same J as a complex of states. Strong mixing of the
4dj 4fj ′ (1) and 4dj 5pj ′ (1) hole–particle states is discussed
in ref. 8. For even-parity complex with J = 1 and 2, we found
strong mixing for states with 4p and 4d holes, i.e., 4dj 5s1/2 (J )
and 4pj 4fj ′ (J ) states. In Fig. 3, we show the dependence of
the eigenvectors using the example of even-parity states with
J = 1 and J = 2. This particular J = 1 even-parity complex
includes 11 states that are listed in Table 1. Using the first-order
expansion coefficients CN [av(J )] defined in the previous sec-
tion, we can present the resulting eigenvectors as

�(N) = CN [4d3/25s1/2(1)]�[4d3/25s1/2(1)]
+ CN [4d5/25d3/2(1)]�[4d5/25d3/2(1)] + CN [4d5/25d5/2(1)]�[4d5/25d5/2(1)]
+ CN [4d3/25d3/2(1)]�[3d3/25d3/2(1)] + CN [4d3/25d5/2(1)]�[4d3/25d5/2(1)]
+ CN [4p3/25p1/2(1)]�[4p3/25p1/2(1)] + CN [4p3/25p3/2(1)]�[4p3/25p3/2(1)]
+ CN [4p1/25p1/2(1)]�[4p1/25p1/2(1)] + CN [4p1/25p3/2(1)]�[4p1/25p3/2(1)]

+ CN [4p3/24f5/2(1)]�[4p3/24f5/2(1)] + CN [4p3/25f5/2(1)]�[4p3/25f5/2(1)] (2)

As a result, 121 CN [av(J )] coefficients are needed to describe the 11 eigenvalues. For simplicity, we plot only four of the 11
mixing coefficients for the level N = 4d5d 3D1 in the left panel of Fig. 3. These coefficients are chosen to illustrate the mixing
of the states; the remaining mixing coefficients give very small contributions to this level. We observe strong mixing between
[4d5/25dj (1)]+[4p3/24f5/2(1)] states for Z = 65−66 and [4d3/25s1/2(1)]+[4p3/24f5/2(1)] states for Z = 75−76.We plot four of
the 15 mixing coefficients for theN = 4d5s 3D2 level in the right panel of Fig. 3.The mixing of the [4d3/25s1/2(2)]+[4p3/24f5/2(1)]
states leads to the sharp feature in the region of Z = 78–79.

Energies, relative to the ground state, of even- and odd-parity states with J = 0, 1, and 2, divided by (Z − 35)2, are shown in
Fig. 4. It should be noted that the (Z − 35)2 factor was introduced to provide better presentation of the energy diagrams. We plot
the limited number of energy levels to illustrate Z dependence choosing one representative from a configuration. As a result, we
show 5 levels from 68 odd-parity states, and 5 levels from 56 even-parity states in Fig. 4. We find that E/(Z−35)2 slowly increases
with Z for the most of levels, except for the 4d5s 3D1 and 4d5p 3P0 levels. The curve describing the energy of the 4d5s 3D1 level
almost crosses the energy of the 4d5d 3D1 level. The difference in energies between two levels is equal to 40 cm−1 at Z = 76
(about 0.001% from energy of these levels). It is known that the crossing of energy levels inside the one complex with fixed J is
forbidden by the Wigner and Neumann theorem (see, for example, ref. 40).

We can observe from the left panel of Fig. 4 that the curves describing the energy of the 4d5s 3D1 and 4d5d 3D1 levels does not
cross at at Z = 76 and curve 2 stays above curve 1 for the entire range Z = 47–100. The similar behavior of the curves describing
the energy of the 4d5p 3P0 and 4d4f 3P0 levels is seen on the right panel of Fig. 4. The difference in energies for these levels at
Z = 55 is equal to 2519 cm−1, that is about 0.3% from energy of these levels. The energy of the 4d5f 3F2 level increases very
rapidly with Z and becomes almost equal to the energy of the 4p5s 3P2 level for Z ≥60 (see curves 3 and 4 on the right panel of
Fig. 4).

The energy differences between levels of odd- and even-parity triplet terms, divided by (Z − 35)2, are illustrated in Fig. 5. The
energy-splitting intervals for the triplet terms shown in Fig. 5 are smaller than the excitation energies shown in Fig. 4 by a factor
of 50–100. As a result, the influence of the correlation and relativistic effects becomes more evident for the splitting of terms. We
observe a very sharp change of splitting with Z for all curves shown in Fig. 5, while the Z dependencies of curves demonstrated by
Fig. 4 are rather smooth. The sharp feature at Z = 55–56 illustrated in Fig. 5 for the splitting of the 4d5p 3PJ and 4d5p 3FJ terms
is caused by strong mixing between 4p5d and 4d4f configurations that is discussed in ref. 8. The mixing of the [4d3/25s1/2(2)] +
[4p3/24f5/2(1)] states exhibits the sharp feature in the region of Z = 78–79 for the 4d5s 3DJ splittings shown on the right bottom
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panel of Fig. 5. Our calculations show that the fine structures
of almost all levels illustrated in Fig. 5 do not follow the Landé
rules even for small Z. The unusual splittings may be caused by
changes from LS to jj coupling, with mixing from other triplet
and singlet states. The different J states are mixed differently.
Further experimental confirmation would be very helpful in
verifying the correctness of these sometimes sensitive mixing
parameters.

4. Electric-dipole, electric-quadrupole, and
electric-octupole matrix elements

We calculate electric-dipole (E1) matrix elements for the
transitions between the 14 odd-parity 4dj 5pj ′(1), 4dj 4fj ′(1),
4dj 5fj ′(1), 4pj 5s1/2(1), and 4pj 5dj ′(1) excited states and
the ground state, electric-octupole (E3) matrix elements be-
tween the 15 even-parity 4dj 5s1/2(2), 4dj 5dj ′(2), 4pj 5pj ′(2),
4pj 4fj ′(2), and 4pj 5fj ′(2) excited states and the ground state,
and electric-quadrupole (E2) matrix elements between the 14
odd-parity 4dj 5pj ′(3), 4dj 4fj ′(3), 4dj 5fj ′(3), and 4pj 5dj ′(3)
excited states and the ground state for Pd-like ions with nuclear
charges Z = 47–100.

The first- and second-order Coulomb corrections and second-
order Breit–Coulomb corrections to reduced E1 and E2 matrix
elements will be referred to as Z(1), Z(2), and B(2), respec-
tively, throughout the text. These contributions are calculated
in both length and velocity gauges. In this section, we show
the importance of different contributions and discuss the gauge
dependence of the E1, E2, and E3 matrix elements.

The evaluation of the first- and second-order reduced multi-
pole matrix elements — Coulomb: Z(1), Z(2), and Breit: B(2),
— for palladium-like ions follows the pattern of the correspond-
ing calculation for nickel-like ions ref. 28. The second-order
reduced matrix element Z(2) for the transition between the
hole–particle states and the ground state consists of three con-
tributions: Dirac–Hartree–Fock (HF) term (Z(HF)), RPA term
(Z(RPA)), and the derivative (derv) term, Z(derv). Analytical ex-
pressions of the first-order Z(1) and the second-order contribu-
tions Z(DF), Z(RPA), and Z(derv) for transitions between excited
ground state in hole–particle systems are given by eqs. (2.13)–
(2.16) in ref. 28. The K-pole matrix elements Z(1), that include
retardation, are given by eqs. (38, 39) of ref. 41 and Appendix
A of ref. 31.

4.1. Example: E1, E2, and E3 matrix elements for Xe8+

In Table 5, we list values of uncoupled first- and second-
order E1, E2, and E3 matrix elements Z(1), Z(2), B(2), together
with derivative terms P (derv), for Pd-like xenon, Z = 54 (for
details, see, refs. 31–33). We list values for the E1 transitions
between odd-parity states with J = 1 and the ground state, the
E2 transitions between even-parity states with J = 2 and the
ground state, and the E3 transitions between odd-parity states
with J = 3 and the ground state. Matrix elements in both
length (L) and velocity (V ) forms are given. We can see that
the first-order matrix elements, Z

(1)
L and Z

(1)
V , differ by 15–

20%; however, the L–V differences between second-order ma-
trix elements are much larger for some transitions. For the E1
transitions, the derivative term in length form, P (derv)

L , is almost

equal to Z
(1)
L , but the derivative term in velocity form, P

(derv)
V ,

is smaller than Z
(1)
V by three to four orders of magnitude. For

the E2 transitions, the value of P (derv) in velocity form almost
equals Z(1) in velocity form, and the P (derv) in length form is
larger than Z(1) in length form by a factor of two. For the E3
transitions, the value of P (derv) in velocity form is larger than
Z(1) in velocity form by a factor of two, and the P (derv) in length
form is larger than Z(1) in length form by factor of three.

Values of E1, E2, and E3 coupled reduced matrix elements
in length and velocity forms are illustrated in Table 6 for the
limited set of transitions. Although we use an intermediate-
coupling scheme, it is nevertheless convenient to label the phys-
ical states using the jj labelling for high-Z and the LS la-
belling for low-Z; both designations are used in Table 6. The
first two columns in Table 6 show L and V values of coupled
reduced matrix elements calculated in first order. The L − V
difference is about 15–20%. Including the second-order con-
tributions (columns headed RMBPT in Table 6) decreases the
L−V difference to 1–5%. This L−V difference arises because
we start our RMBPT calculations using a nonlocal Dirac–Fock
(DF) potential. If we were to replace the DF potential by a local
potential, the differences would disappear completely. It should
be emphasized that we include the negative energy state (NES)
contributions to sums over intermediate states (see ref. 29 for
details).

4.2. Z-dependences of E1, E2, and E3 matrix elements in
Pd-like ions

In Fig. 6, differences between length (L) and velocity (V )
forms are illustrated for the various contributions to uncoupled
0 − 4d3/25p1/2(1), 0 − 4d5/25d3/2(2), and 0 − 4d5/25p1/2(3)
matrix elements, where 0 is the ground state.We observe that the
curves describing the first-order matrix elements Z

(1)
L and Z

(1)
V

smoothly decrease with Z; however, the curves describing the
second-order matrix elements Z

(2)
L , B

(2)
L , Z

(2)
V , and B

(2)
V have

deep minima. The differences between Z
(1)
L and Z

(1)
V decrease

with Z and are equal to 25–35% for Z = 50 and 9–12% for
Z = 70. In the case of E1 transitions, the ratio of the second-
order contributions Z

(2)
L and Z

(2)
V is equal to 2.5 for Z = 50 and

decreases with increasing Z to 0.13 for Z = 70. The value of the
second-order Coulomb matrix elements Z

(2)
L becomes smaller

than the value of the second-order Breit matrix elements B
(2)
L

and B
(2)
V at Z = 65 and Z = 66, respectively. Similar behavior

is found for the curves describing the second-order octupole
(E3) matrix elements (see bottom panel of Fig. 6). The second-
order Coulomb matrix elements 0 − 4d5/25p1/2(3) in length

form, Z
(2)
L , become smaller than all other three second-order

matrix elements B
(2)
L , Z

(2)
V , and B

(2)
V at Z ≥ 70.

The difference between length- and velocity-forms for E2
transitions is illustrated in the top right panel of Fig. 6 for the
uncoupled 0 − 4d5/25d3/2(2) matrix element. In the case of

E2 transitions, the difference between Z
(1)
L and Z

(1)
V decreases

with Z to 8% for high-Z ions. The difference between Z
(2)
L

and Z
(2)
V increases with increasing Z from 8% for Z = 50

to 25% for Z ≥ 70. The difference between B
(2)
L and B

(2)
V

is very large, but the values of the second-order Breit matrix
elementsB

(2)
L andB

(2)
V are smaller than the values of the second-

order Coulomb matrix elements Z
(2)
L and Z

(2)
V for the uncoupled

0 − 4d5/25d3/2(2) matrix element.
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Fig. 5. Energy splitting (�E/(Z − 35)2 in cm−1) for terms of odd- and even-parity states in Pd-like ions as function of Z.

Table 5. E1, E2, and E3 uncoupled reduced matrix elements in length L and velocity V forms for transitions from
av(J ) states with J = 1, 2, and 3 into the ground state in Xe8+.

av(J ) Z
(1)

L Z
(1)

V Z
(2)

L Z
(2)

V B
(2)

L B
(2)

V P
(derv)
L P

(derv)
V

E1 uncoupled reduced matrix elements
4d5/25p3/2(1) −0.60237 −0.45923 0.00200 −0.02531 0.00001 0.00086 −0.60225 −0.00006
4d5/24f7/2(1) 1.58706 1.23617 −0.23568 0.08026 0.00111 −0.00131 1.58649 −0.00062
4d5/25f7/2(1) 0.38190 0.28900 −0.07140 0.03354 0.00022 −0.00038 0.38189 −0.00012
4p3/25s1/2(1) −0.31860 −0.25472 0.02022 0.00003 −0.00043 0.00024 −0.31839 0.00001
4p3/25d5/2(1) 0.06338 0.05135 0.04517 0.01580 0.00032 0.00021 0.06307 −0.00015

E2 uncoupled reduced matrix elements
4d5/25s1/2(2) −0.90058 −0.65040 0.01094 −0.00867 −0.00124 0.00002 −1.80112 −0.65050
4d5/25d5/2(2) 0.60153 0.49652 0.05947 0.06505 0.00087 0.00010 1.20280 0.49638
4p3/25p1/2(2) 0.35847 0.29250 0.24127 0.22223 0.00072 0.00014 0.71674 0.29249
4p3/24f7/2(2) −1.07218 −0.88408 −0.83482 −0.79029 −0.00147 0.00048 −2.14349 −0.88316
4p3/25f7/2(2) −0.26953 −0.21817 −0.36515 −0.33318 −0.00013 0.00036 −0.53901 −0.21802

E3 uncoupled reduced matrix elements
4d5/25p3/2(3) 1.05857 0.83941 0.00753 0.02213 0.00203 0.00074 3.18866 1.67878
4d3/24f5/2(3) −1.09763 −0.89164 0.05569 0.09700 −0.00307 −0.00094 −3.28816 −1.78313
4d5/25f7/2(3) 0.21652 0.22152 0.11274 0.11943 0.00070 0.00051 0.65126 0.44277
4p3/25d3/2(3) 0.44858 0.38218 0.12640 0.12996 0.00127 0.00050 1.35238 0.76422

The differences between results in length and velocity forms
shown in Fig. 6 are compensated by additional second-order
terms called “derivative terms” P (derv); they are defined by
eq. (2.16) of ref. 28 (see, also Tables 5 and 6). The derivative

terms arise because transition amplitudes depend on the energy,
and the transition energy changes order-by-order in RMBPT
calculations.
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Table 6. E1, E2, and E3 coupled reduced matrix elements in length L and
velocity V forms for transitions from av(J ) states into the ground state in Xe8+.

First order RMBPT

av(J ) av(LSJ ) L V L V

E1 coupled reduced matrix elements
4d3/25p1/2(1) 4d5p 1P1 −0.71612 −0.54649 −0.70907 −0.70267
4d3/24f5/2(1) 4d4f 1P1 1.96130 1.53122 1.67641 1.64343
4d5/25f7/2(1) 4d5f 3D1 0.22181 0.17013 0.18741 0.18013
4p3/25s1/2(1) 4p5s 1P1 0.28398 0.22801 0.27669 0.27125
4p1/25d3/2(1) 4p5d 3D1 0.03323 0.02642 −0.01625 −0.01650
E2 coupled reduced matrix elements
4d3/25s1/2(2) 4d5s 1D2 0.90870 0.66357 0.61578 0.68005
4d5/25d5/2(2) 4d5d 3P2 0.60861 0.50279 0.58822 0.59015
4d3/25d3/2(2) 4d5d 1D2 −0.62091 −0.51446 −0.58196 −0.58612
4p3/24f5/2(2) 4p4f 3D2 −0.73965 −0.60926 −0.75248 −0.74633
E3 coupled reduced matrix elements
4d5/25f7/2(3) 4d5f 1F3 −0.07875 −0.07274 −0.11884 −0.11094
4d3/25f7/2(3) 4d5f 3G3 0.09254 0.08519 0.14804 0.14846
4p3/25d3/2(3) 4p5d 3F3 0.48884 0.41740 0.65150 0.65491
4p3/25d5/2(3) 4p5d 3D3 0.22116 0.18688 0.39485 0.38310

Fig. 6. The first- and second-order Coulomb corrections (Z(1), Z(2)), and second-order Breit–Coulomb corrections (B(2)) for E1, E2,
and E3 uncoupled matrix elements for transitions between excited and ground states calculated in length (L) and velocity (V ) forms in
Pd-like ions.
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Fig. 7. The first- and second-order corrections (Z(1), Z(2)) for M1, M2, and M3 uncoupled matrix elements for transition between
excited and ground states in Pd-like ions. The first-order (Z(1)) matrix elements calculated in nonrelativistic (Z(1)

NR), relativistic frequency-
independent(Z(1)

R ), and relativistic frequency-dependent (Z(1)
RF ) approximations are presented. The second-order Coulomb (Z(2)

CL) and
Breit–Coulomb corrections (Z(2)

BR) are also given.

Fig. 8. The total M1 line strengths (S(1+2)
RF ) between the 4d5s 3D1 excited state and the ground state in Pd-like ions as function of

Z. The first-order (S(1)) line strengths calculated in nonrelativistic (S(1)
NR), relativistic frequency-independent (S(1)

R ), and relativistic
frequency-dependent approximations (S(1)

RF ) are presented.
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Table 7. Energies (103cm−1) of odd- and even-parity states relative to the ground state in Pd-like xenon.
Comparison of the RMBPT data and data from the COWAN code [43] with experimental values [11].

Level RMBPT Expt. COWAN Level RMBPT Expt. COWAN

4d3/25s1/2
3D1 464.647 470.048 474.953 4d3/25d3/2

3P0 797.896 798.896 800.098
4d5/25s1/2

3D2 452.403 456.956 462.274 4d5/25d5/2
1S0 834.818 843.962 850.084

4d3/25s1/2
1D2 471.295 473.496 478.377 4d5/25d3/2

3S1 779.845 780.792 782.721
4d5/25s1/2

3D3 450.649 453.468 458.936 4d5/25d5/2
1P1 789.423 790.854 792.447

4d3/25d3/2
3P1 802.917 803.860 805.106

4d3/25p3/2
3P0 607.570 607.906 610.152 4d3/25d5/2

3D1 807.016 807.691 808.902
4d5/25p3/2

3P1 589.358 594.592 598.038 4d5/25d3/2
3D2 788.011 790.022 791.761

4d3/25p1/2
1P1 601.998 604.877 608.162 4d5/25d5/2

3P2 794.643 790.070 797.552
4d3/25p3/2

3D1 616.912 618.269 621.353 4d3/25d3/2
1D2 808.700 810.825 812.055

4d5/25p1/2
3P2 569.187 575.438 580.213 4d3/25d5/2

3F2 810.111 811.675 813.163
4d5/25p3/2

3F2 590.465 591.154 597.942 4d5/25d3/2
3D3 790.344 792.488 794.584

4d3/25p1/2
1D2 600.537 602.541 606.623 4d5/25d5/2

1F3 793.613 795.332 797.136
4d3/25p3/2

3D2 618.074 621.147 624.510 4d3/25d3/2
3G3 803.533 805.240 807.103

4d5/25p1/2
3F3 575.957 578.986 584.299 4d3/25d5/2

3F3 811.665 813.696 814.970
4d5/25p3/2

3D3 602.436 605.410 609.128 4d5/25d3/2
3G4 786.669 788.522 790.914

4d3/25p3/2
1F3 613.858 616.157 619.300 4d5/25d5/2

3F4 795.211 797.063 798.796
4d5/25p3/2

3F4 594.369 596.854 600.514 4d3/25d5/2
1G4 807.691 809.314 810.629

4d5/25d5/2
3G5 788.899 790.742 792.579

4d5/24f5/2
3P0 652.795 662.461 664.012 4d5/25f5/2

3P0 994.100 990.713 992.927
4d5/24f5/2

3P1 655.104 665.447 666.724 4d5/25f5/2
3P1 995.870 992.190 994.368

4d5/24f7/2
3D1 687.124 696.312 697.257 4d5/25f7/2

3D1 1007.095 1004.493 1006.755
4d3/24f5/2

1P1 819.402 832.414 842.176 4d3/25f5/2
1P1 1045.212 1036.871 1052.037

4d5/24f5/2
3P2 662.600 670.544 672.121 4d5/25f5/2

3P2 996.919 994.492 996.530
4d5/24f7/2

1D2 683.618 689.957 690.948 4d5/25f7/2
1D2 999.768 998.024 999.938

4d3/24f5/2
3D2 691.734 699.289 700.035 4d3/25f5/2

3D2 1013.613 1011.201 1012.718
4d3/24f7/2

3F2 699.333 705.901 706.708 4d3/25f7/2
3F2 1016.282 1014.147 1016.165

4d5/24f5/2
3F3 685.066 690.460 691.584 4d5/25f5/2

3F3 999.504 998.220 1000.228
4d5/24f7/2

3D3 693.549 699.660 700.791 4d5/25f7/2
1F3 1002.543 1001.354 1003.423

4d3/24f5/2
3G3 708.293 712.655 713.611 4d3/25f5/2

3D3 1017.290 1015.439 1017.514
4d3/24f7/2

1F3 719.048 722.667 723.853 4d3/25f7/2
3G3 1018.346 1017.377 1019.405

4d5/24f5/2
3H4 683.342 690.311 691.244 4d5/25f5/2

3F4 1000.564 998.989 1001.283
4d5/24f7/2

3F4 686.232 692.368 693.903 4d5/25f7/2
1G4 1001.151 999.783 1001.957

4d3/24f5/2
1G4 698.488 704.102 704.989 4d3/25f5/2

3H4 1014.290 1012.122 1014.231
4d3/24f7/2

3G4 709.665 715.074 716.052 4d3/25f7/2
3G4 1018.150 1017.029 1018.768

4d5/24f5/2
3H5 675.642 682.823 683.650 4d5/25f5/2

3H5 997.898 995.961 998.266
4d5/24f7/2

1H5 691.234 697.763 698.281 4d5/25f7/2
3G5 1001.660 1000.432 1002.584

4d3/24f7/2
3G5 701.653 707.270 707.857 4d3/25f7/2

1H5 1015.367 1013.617 1015.477
4d5/24f7/2

3H6 672.161 679.529 680.870 4d5/25f7/2
3H6 997.659 995.359 997.628

5. Magnetic-dipole, magnetic-quadrupole,
and magnetic-octupole matrix elements

We calculate magnetic-dipole (M1) matrix elements for the
transitions between the 11 even-parity 4dj 5s1/2(1), 4dj 5dj ′(1),
4pj 5pj ′(1), 4pj 4fj ′(1), and 4pj 5fj ′(1) excited states and the
ground state; the magnetic-quadrupole (M2) matrix elements
between the 17 odd-parity 4dj 5pj ′(2), 4dj 4fj ′(2), 4dj 5fj ′(2),
4pj 5s1/2(2), and 4pj 5dj ′(2) excited states and the ground state;
and the magnetic-octupole (M3) matrix elements for the tran-
sitions between the 14 even-parity 4dj 5s1/2(3), 4dj 5dj ′(3),
4pj 5pj ′(3), 4pj 4fj ′(3), and 4pj 5fj ′(3) excited states and the
ground state for Pd-like ions with nuclear charges Z = 47–100.

We calculate first- and second-order Coulomb, second-order
Breit–Coulomb corrections, and second-order derivative term
to reduced M1, M2, and M3 matrix elements Z(1), Z(2), B(2),
and P (derv), respectively, using the methods described in

eqs. (2.13)–(2.18) of ref .28 and eqs. (A3)–(A5) of ref. 42,
respectively. In this section, we illustrate the importance of the
relativistic and frequency-dependent contributions to the first-
order M1, M2, and M3 matrix elements. We also show the
importance of taking into account the second-order RMBPT
contributions to M1, M2, and M3 matrix elements, and we sub-
sequently discuss the necessity of including the negative-energy
contributions to sums over intermediate states. Ab initio rela-
tivistic calculations require careful treatment of negative-energy
states (virtual electron–positron pairs). In second-order matrix
elements, such contributions explicitly arise from those terms
in the sum over states for which εi < −mc2. The effect of the
negative-energy states (NES) contributions to M1-amplitudes
has been studied recently in ref. 33. The importance of the NES
contributions varies with the transition. For example, the NES
contributions to the second-order Breit–Coulomb matrix ele-
ments B(2) for the transition from 4d5/25d3/2(1) state weakly
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Table 8. Wavelengths (λ in Å) and weighted transition rates (gA in 109 s−1) for odd-parity states with
J = 1 in Pd-like ions with Z = 54–59. The RMBPT results are compared with experimental values “Expt.”
for wavelengths and transition rates “COWAN” presented in refs. 11 and 13.

RMBPT Expt. RMBPT COWAN RMBPT Expt. RMBPT COWAN

jj and LS. λ λ gA gA λ λ gA gA

Pd-like Xe8+ Pd-like Cs9+

4d5/25p3/2
3P1 169.582 1.5 146.296 145.172 0.1 3.0

4d3/25p1/2
1P1 166.081 165.323 235.4 264.8 143.402 142.890 323.1 343.3

4d3/25p3/2
3D1 162.066 161.742 37.0 47.0 141.327 139.670 2.1 62.4

4d5/24f5/2
3P1 152.647 150.275 0.7 0.7 139.913 139.534 58.5 1.4

4d5/24f7/2
3D1 145.534 143.614 5.1 5.9 134.027 132.888 5.7 8.4

4d3/24f5/2
1P1 121.998 120.133 3672.0 4766.0 110.918 109.589 5034.0 5992.0

4d5/25f5/2
3P1 100.407 2.2 88.119 5.0

4d5/25f7/2
3D1 99.289 99.535 74.8 64.7 87.155 87.337 71.7 60.6

4d3/25f5/2
1P1 95.670 96.449 1235.4 1516.0 84.529 85.052 805.5 916,8

Pd-like Ba10+ Pd-like La11+

4d5/25p3/2
3P1 132.007 0.8 124.055 0.9

4d3/25p1/2
1P1 127.772 126.908 0.8 9.9 116.944 116.473 5.7 8.8

4d3/25p3/2
3D1 125.140 125.042 207.2 441.7 112.806 112.107 4.8 26.9

4d5/24f5/2
3P1 124.983 124.001 244.7 26.0 110.765 110.514 583.2 581.9

4d5/24f7/2
3D1 122.250 122.103 76.6 87.2 107.975 107.959 108.1 116.2

4d3/24f5/2
1P1 102.309 101.391 6078.0 7471.0 95.396 94.764 6948.0 9476.0

4d5/25f5/2
3P1 78.194 44.2 70.033 192.4

4d5/25f7/2
3D1 77.365 9.4 69.322 23.4

4d3/25f5/2
1P1 75.436 381.6 67.838 73.8

Pd-like Ce12+ Pd-like Pr13+

4d5/25p3/2
3P1 117.174 0.9 111.144 109.900 1.1 1.3

4d3/25p1/2
1P1 110.260 109.945 7.7 13.3 104.436 104.225 9.7 13.

4d3/25p3/2
3D1 100.516 99.936 12.9 61.8 90.256 89.773 23.7 97.

4d5/24f5/2
3P1 98.718 98.535 761.7 787.6 88.662 88.513 1055.7 1056.

4d5/24f7/2
3D1 96.180 96.091 156.2 141.2 86.354 86.274 271.6 251.

4d3/24f5/2
1P1 89.680 89.237 7518.0 9434.0 84.779 84.500 7890.0 9532.

4d5/25f5/2
3P1 63.216 34.9 57.449 435.3

4d5/25f7/2
3D1 62.607 153.5 56.925 268.3

4d3/25f5/2
1P1 61.397 8.1 55.885 92.0

increases with Z, however, the relative NES contribution for
this transition decreases with Z (2% and 0.6% for Z = 50 and
Z = 90, respectively). It should be noted that the NES contribu-
tion for this transition is of the same order as the positive-energy
state contribution to the second-order Breit–Coulomb matrix el-
ements causing severe cancellation and drastically reducing the
B(2) values in this case.

5.1. Z-dependences of M1, M2, and M3 matrix elements
in Pd-like ions

The differences between first-order M1 uncoupled matrix
elements, calculated in nonrelativistic, relativistic frequency-
independent, and relativistic frequency-dependent approxima-
tions are illustrated in the left top panel of Fig. 7 for the 0 −
4d5/25d5/2(1) matrix element. The corresponding matrix ele-

ments are labeled Z
(1)
RF , Z(1)

R , and Z
(1)
NR. Formulas for relativistic

frequency-dependent and nonrelativistic first-order M1 matrix
elements are given by eqs. (A8)–(A12) of ref. 31. We also plot
the second-order Coulomb contributions, Z(2)

CL, and the second-

order Breit–Coulomb contributions, Z(2)
BR, in the same figure.As

we observe from the left panel of Fig. 7, the values of Z
(1)
NR are

twice as small as the values of Z
(1)
R and Z

(1)
RF . Therefore, rela-

tivistic effects are very large for M1 transitions. The frequency-
dependent relativistic matrix elements Z

(1)
RF differ from the rel-

ativistic frequency-independent matrix elements Z
(1)
R by 50–

90%. The differences between other first-order matrix elements
calculated with and without frequency dependence are also on
the order of a few percent. Uncoupled second-order M1 matrix
elements, Z

(2)
CL, are comparable in size to the first-order matrix

elements Z
(1)
RF for small Z, but the relative size of the second-

order contribution decreases for high Z. This is expected since
second-order Coulomb matrix elements Z

(2)
CL are proportional

to Z for high Z while first-order matrix elements Z
(1)
RF grow as

Z2. The second-order Breit–Coulomb matrix elements Z
(2)
BR are

proportional to Z3 and become larger than Z
(2)
CL for high Z.

The differences between the first-order M2 uncoupled ma-
trix elements for the 0 − 4d5/25p1/2(2) matrix element, calcu-

lated in relativistic frequency-independent Z
(1)
R , and relativis-
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Fig. 9. E1, E2, and M3 transition rates (gAr ) for transitions between odd- and even-parity states and ground state in Pd-like ions as
function of Z.

tic frequency-dependent Z
(1)
RF approximations are very small

(about 1%), and we include only Z
(1)
RF in the right top panel

of Fig. 7. Formulas for relativistic frequency-dependent and
frequency-independent first-order M2 matrix elements are given

by eqs. (A3)–(A5) of ref. 42. We also plot the second-order
Coulomb contributions, Z

(2)
CL, and the second-order

Breit–Coulomb contributions, Z
(2)
BR, in the same figure. We ob-

serve the sharp features around Z = 78 in the curves illustrating
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Fig. 10. M1, M2, and E3 transition rates (gAr ) for transitions between odd- and even-parity states and the ground state in Pd-like ions
as function of Z.

the Z
(2)
CL and Z

(2)
BR trends. Those features result from very small

values of the denominators in the second-order contributions
Z

(2)
CL and Z

(2)
BR [8].

Similar features are observed in the second-order Coulomb
contributions, Z

(2)
CL, and the second-order Breit–Coulomb con-

tributions, Z
(2)
BR for the 0 − 4d5/25s1/2(3) magnetic-octupole

matrix element in the bottom panel of Fig. 7.
In Fig. 8, we illustrate the Z-dependence of the line strengths

of M1 transition from the 4d5s 3D1 excited state to the ground
state. It should be noted that the line strength is defined as a
square of a coupled matrix element. In Fig. 8, we plot the val-
ues of the first-order line strengths S

(1)
NR, S(1)

R , and S
(1)
RF calculated

in the same approximations as the M1 uncoupled matrix ele-
ments: nonrelativistic, relativistic frequency-independent, and
relativistic frequency-dependent approximations, respectively.
The total line strengths S(1+2), which include second-order cor-
rections, are also plotted. It should be noted that the value of
the nonrelativistic matrix element, Z

(1)
NR(0 − 4d5/25s1/2(1)), is

equal to zero. Small mixing inside of the even-parity complex
with J = 1 between 4d5/25s1/2, 4dj 5dj ′ , and 4pj 5pj ′ states
gives a nonzero value of the first-order coupled matrix element

and, consequently, the line strengths S
(1)
NR even for Z = 47.

However, the value of S
(1)
NR is smaller than the value of S

(1)
R

by one order of magnitude at Z = 47. The difference be-
tween the values of S

(1)
R and S

(1)
RF is 36% for Z = 47. The

second-order contribution gives an additional contribution for
the value of the line strengths, and the ratio of S

(1+2)
RF and S

(1)
RF

is about 15 for Z = 47. The ratios between S
(1)
NR, S(1)

R , S(1)
RF , and

S
(1+2)
RF change with Z owing to increasing relativistic effects.

The abrupt change in the values of the S
(1)
NR at Z = 76 happens

because of very strong mixing between the 4d5/25s1/2(1) and
4p3/24f5/2(1) states (see Fig. 3). It should be noted that the

Z
(1)
NR(0 − 4p3/24f5/2(1)) value is zero and, as a result, we ob-

serve a sharp (three order of magnitude) decrease in the value
of S

(1)
NR at Z ≥ 76.

5.2. E1, E2, E3, M1, M2, and M3 transition rates
The E1, E2, E3, M1, M2, and M3 transition probabilities Ar

(s−1) for the transitions between the ground state and 4lj4fj ′(J ),
4lj5l′j ′(J ) states are obtained in terms of line strengths S (a.u.)
and wavelength λ(Å) as
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A(E1) = 2.02613 × 1018

(2J + 1)λ3 S(E1), A(M1) = 2.69735 × 1013

(2J + 1)λ3 S(M1)

A(E2) = 1.11995 × 1018

(2J + 1)λ5
S(E2), A(M2) = 1.49097 × 1013

(2J + 1)λ5
S(M2)

A(E3) = 3.14441 × 1017

(2J + 1)λ7 S(E3), A(M3) = 4.18610 × 1012

(2J + 1)λ7 S(M3) (3)

In the tables and figures below, we present our RMBPT calculations for E1, E2, E3, M1, M2, and M3 transition rates and
wavelengths.

6. Comparison of results with other theory
and experiment

We calculate energies of the 56 even-parity 4dj 5s1/2(J ),
4dj 5dj ′(J ), 4pj 5pj ′(J ), 4pj 4fj ′(J ), and 4pj 5fj ′(J ) excited
states and 68 odd-parity 4dj 5pj ′(J ), 4dj 4fj ′(J ), 4dj 5fj ′(J ),
4pj 5s1/2(J ), and 4pj 5dj ′(J ) excited states for Pd-like ions
with nuclear charges Z = 47–100. Reduced matrix elements,
oscillator strengths, and transition rates are determined for E1-,
E2-, E3-, M1-, M2-, and M3-allowed and forbidden transitions
into the ground state for each ion. Comparisons are also given
with other theoretical results and with experimental data. Our
results are presented in two parts: wavelengths and transition
probabilities.

6.1. Transition energies
In Table 7, we compare our RMBPT results for the exci-

tation energies of the odd-parity states in Pd-like xenon with
theoretical results obtained by COWAN code [43] and experi-
mental data presented by Churilov et al. [11]. The experimental
results were confirmed by semi-empirical calculations in the
frames of the Cowan code and Generalized Least-Square tech-
niques [11]. Our RMBPT results differ from the results pre-
sented in ref. 11 by about 0.1–0.5% for most of the levels, except
the 4dj4fj ′ J levels when the disagreement is about 0.5–1.5%.
We can see from Table 7 that the RMBPT values are smaller
than the experimental values, however, the COWAN values are
larger than experimental values in many cases. Correlation ef-
fects in the COWAN code are included by taking into account
additional configurations (4p64d10 +4p64d95s+4p64d95d +
4p64d96s+4p64d96d+4p54d104f +4p54d105p+4p54d105f
and 4p64d95p + 4p64d94f + 4p64d96p + 4p64d95f
+ 4p54d105s + 4p54d105d) and scaled Hartree–Fock (HF) in-
tegrals. Only one scaling factor, 0.85, is used in the results given
in the column headed COWAN in Table 7. The labelling of the
levels in ref. 11 was based on the COWAN code. It should
be noted that the RMBPT code used jj -coupling; however,
the COWAN code used LS-coupling for uncoupled matrix el-
ements. To compare the results obtained after diagonalization
of the energy matrixes in Table 7, we use both the jj and LS
designations. The LSJ labels in the RMBPT code are chosen
by searching for small values of multiplet splitting for low-Z
ions. We found that resulting LS designations in RMBPT and
COWAN codes differ for some states. In the COWAN code, a
label for every level was chosen as a maximum value among
eigenvectors. As a result, two levels can have the same label. It
is known that the crossing of energy levels inside one complex

with the same J is forbidden by the Wigner and Neumann the-
orem (see, for example, ref. 40). As a result, we can use only
the numbering of the levels by ordering of energies. We already
mentioned that either LS or jj designations are used to label
the resulting eigenvectors and eigenvalues rather than simply
enumerating levels with an index N . We choose the LS desig-
nations here since the jj designations are used for uncoupled
matrix elements.

6.2. E1, E2, E3, M1, M2, and M3 transition
probabilities

We present the resulting transition probabilities (Ar ) in Figs. 9
and 10. Transition rates for the six E1 transitions from the
4d5p 3P1, 1P1, 3D1, and 4d4f 3P1, 3D1, 1P1 levels to the
ground state are plotted in the top panel of Fig. 9. The deep min-
imum in the curves labeled 4d4f 3P1 (Z = 88), and 4d5p 3D1
(Z = 56) are due to mixing of [4d5/24f5/2(1) + 4d5/24f7/2(1)]
and [4d3/25p1/2 (1) + 4d5/25p3/2 (1)] states, respectively. It
should be noted that the mixing of those states is not very large
(about 15–20%) in the first case, but the ratios of correspond-
ing dipole-matrix elements are equal to 4–5, and the sign of
these ratios is different from the sign of the corresponding ra-
tio of mixing coefficients. This leads to cancellation since the
coupled matrix elements are products of matrix elements and
mixing coefficients. As a result, deep minima occur in the curve
illustrated the transition from the 4d4f 3P1 state at Z = 88 (see
also ref. 8).

Transition rates for the six E2 transitions from 4d5s 3D2,
1D2 and 4d5d 3D2, 3P2, 1D2, 3F2 levels to the ground state
are plotted in the central panel of Fig. 9. The curves describing
4d5s 3D2, 1D2 transition rates smoothly increase with Z up to
Z = 75 without any sharp features. The difference in values of
Ar for 4d5s 3D2 and 4d5s 1D2 lines is about 20–50%. The deep
minimum in the curve labeled 4d5s 3D2 (Z = 79–82) is due to
mixing of the [4d3/25s1/2 (2) + 4p3/24f5/2 (2)] states (see the
Z-dependence of mixing coefficients for the 4d5d 3D2 states on
the right panel of Fig. 3). The deep, sharp minimum in the curve
labeled 4d5s 1D2 (Z = 77–78) happens because of strong mix-
ing of the [4d5/25s1/2 (2)+ 4p3/24f5/2 (2)], [4d5/25s1/2 (2)+
4d3/25s1/2 (2)], and [4d5/25s1/2 (2)+4p3/24f7/2 (2)] states at
Z = 77–78, Z = 79, and Z ≥ 80, respectively. There are no
large differences in the values of transition rates illustrated on
the right central panel of Fig. 9 due to strong mixing between
the states 4dj 5dj ′ (2) with j = 3/2, 5/2, and j ′ = 3/2, 5/2.

Transition rates for the five M3 transitions from the 4d5s 3D3,
and 4d5d 3G3, 3D3, 3F3, 1F3 levels to the ground state are plot-
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Table 9. Wavelengths (λ in Å) and multipole (E1, E2, E3, M1, M2, and M3) transition rates (Ar in
s−1) for Pd-like Yb24+, Hg34+, Th44+, and U46+. Numbers in brackets represent powers of 10.

Yb24+ Hg34+ Th44+ U46+

Level λ Ar λ Ar λ Ar λ Ar

Magnetic-dipole transitions, M1
4d3/25s1/2

3D1 42.931 5.08[01] 27.163 1.92[03] 21.487 1.92[03] 20.571 7.51[03]
4d5/25d3/2

3S1 35.880 5.34[02] 24.769 6.37[02] 16.455 6.37[02] 15.345 6.82[03]
4d5/25d5/2

1P1 31.374 3.53[05] 18.825 3.61[06] 12.673 3.61[06] 11.821 3.36[07]
4d3/25d3/2

3P1 30.955 3.05[02] 18.516 1.13[05] 12.406 1.13[05] 11.558 3.14[06]
4d3/25d5/2

3D1 30.285 8.13[04] 18.082 3.67[05] 12.052 3.67[05] 11.217 8.65[05]
Electric-quadrupole transitions, E2
4d5/25s1/2

3D2 44.566 5.68[07] 27.162 1.66[06] 21.433 1.66[06] 20.513 6.24[08]
4d3/25s1/2

1D2 42.691 4.91[07] 26.157 7.65[08] 20.597 7.65[08] 19.694 3.66[07]
4d5/25d3/2

3D2 35.898 7.30[06] 26.055 3.77[08] 17.560 3.77[08] 16.434 1.60[09]
4d5/25d5/2

3P2 34.486 4.73[08] 24.738 3.16[08] 16.434 3.16[08] 15.328 1.38[09]
4d3/25d3/2

1D2 31.177 3.35[07] 21.004 1.27[09] 14.965 1.27[09] 13.987 3.45[09]
4d3/25d5/2

3F2 30.814 3.69[08] 18.733 3.12[08] 12.624 3.12[08] 11.776 1.91[09]
Magnetic-octupole transitions, M3
4d5/25s1/2

3D3 44.656 3.24[00] 26.822 2.05[00] 21.226 2.05[00] 20.324 1.40[01]
4d5/25d3/2

3D3 35.456 1.13[01] 26.497 1.01[02] 20.781 1.01[02] 19.855 3.41[02]
4d5/25d5/2

1F3 35.204 2.22[01] 26.097 5.77[01] 17.587 5.77[01] 16.457 5.98[02]
4d3/25d3/2

3G3 31.119 2.06[00] 21.400 8.85[00] 15.125 8.85[00] 14.129 5.35[01]
4d3/25d5/2

3F3 30.824 4.84[01] 21.234 1.07[02] 14.900 1.07[02] 13.901 9.38[02]
Electric-dipole transitions, E1
4d5/25p3/2

3P1 72.695 5.72[08] 55.955 2.53[08] 45.584 2.53[08] 43.957 1.17[08]
4d3/25p1/2

1P1 67.431 2.17[10] 50.970 8.62[10] 40.473 8.62[10] 38.800 3.35[11]
4d3/25p3/2

3D1 55.507 3.86[12] 42.355 5.00[12] 33.663 5.00[12] 32.231 6.69[12]
4d5/24f5/2

3P1 37.813 4.43[11] 22.303 1.66[12] 15.005 1.66[12] 14.015 5.12[12]
4d5/24f7/2

3D1 36.830 9.86[11] 21.503 2.74[12] 14.204 2.74[12] 13.208 7.32[12]
4d3/24f5/2

1P1 35.583 1.39[11] 20.634 3.36[11] 13.477 3.36[11] 12.502 6.42[11]
4d5/25f5/2

3P1 27.577 1.16[12] 17.545 3.45[12] 12.315 3.45[12] 11.579 9.72[12]
4d5/25f7/2

3D1 26.259 1.19[11] 16.138 1.93[11] 11.008 1.93[11] 10.292 1.19[10]
4d3/25f5/2

1P1 26.083 3.13[12] 16.028 1.51[13] 10.921 1.51[13] 10.204 5.04[13]
Magnetic-quadrupole transitions, M2
4d5/25p1/2

3P2 71.062 9.74[03] 54.533 8.14[03] 44.457 8.14[03] 42.886 6.55[03]
4d5/25p3/2

3F2 69.387 1.16[04] 53.150 4.19[04] 42.666 4.19[04] 40.979 1.44[05]
4d3/25p1/2

1D2 66.007 2.90[04] 48.897 8.91[03] 37.847 8.91[03] 36.066 2.23[00]
4d3/25p3/2

3D2 65.271 1.92[02] 48.115 1.20[04] 36.774 1.20[04] 34.930 4.46[05]
4d5/24f5/2

3P2 39.369 1.58[04] 23.488 1.33[05] 16.003 1.33[05] 14.993 7.59[05]
4d5/24f7/2

1D2 37.834 8.44[01] 22.384 3.41[03] 15.047 3.41[03] 14.054 4.06[04]
4d3/24f5/2

3D2 36.864 5.02[04] 21.519 4.49[05] 14.215 4.49[05] 13.218 3.26[06]
4d3/24f7/2

3F2 35.538 2.84[02] 20.570 5.23[02] 13.446 5.23[02] 12.475 7.80[01]
4d5/25f5/2

3P2 27.628 1.18[05] 17.574 8.48[05] 12.332 8.48[05] 11.595 4.46[06]
4d5/25f7/2

1D2 26.192 2.99[05] 16.099 1.46[06] 10.984 1.46[06] 10.269 2.60[06]
4d3/25f5/2

3D2 26.121 3.52[05] 16.053 5.93[06] 10.940 5.93[06] 10.222 5.20[07]
4d3/25f7/2

3F2 25.527 2.50[03] 15.590 1.52[04] 10.533 1.52[04] 9.827 2.39[06]
Electric-octupole transitions, E3
4d5/25p1/2

3F3 69.612 5.54[02] 53.743 5.48[02] 43.904 5.48[02] 42.360 3.73[02]
4d5/25p3/2

3D3 67.630 1.67[01] 51.636 1.53[02] 41.461 1.53[02] 39.831 5.77[02]
4d3/25p3/2

1F3 64.503 8.63[01] 47.818 2.38[02] 37.089 2.38[02] 35.359 5.79[02]
4d5/24f5/2

3F3 63.754 3.45[00] 47.057 5.50[01] 35.987 5.50[01] 34.189 3.22[02]
4d5/24f7/2

3D3 39.223 1.24[04] 23.427 1.06[05] 15.971 1.06[05] 14.964 6.41[05]

4d3/24f5/2
3G3 36.742 1.39[04] 21.459 1.37[05] 14.181 1.37[05] 13.188 1.06[06]

4d3/24f7/2
1F3 35.619 1.91[04] 20.627 2.22[05] 13.473 2.22[05] 12.498 1.91[06]

4d5/25f5/2
3F3 26.135 1.28[05] 16.072 9.42[05] 10.970 9.42[05] 10.257 5.71[06]

4d5/25f7/2
1F3 26.064 2.12[05] 16.021 2.00[06] 10.917 2.00[06] 10.201 1.36[07]

4d3/25f5/2
3D3 25.469 2.06[05] 15.544 1.58[06] 10.512 1.58[06] 9.808 9.86[06]

4d3/25f7/2
3G3 25.443 5.71[01] 15.525 2.45[05] 10.477 2.45[05] 9.770 3.45[06]
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ted in the bottom panel of Fig. 9. The sharp features in the curves
shown in these figures are explained in many cases by strong
mixing of states inside of the even-parity [4d5/25s1/2 (3) +
4p3/24f5/2 (3)] and [4d5/25dj (3) + 4p3/24fj (3)] complexes.
For example, the 4d5/25d3/2 (3) state gives the dominant contri-
bution to the transition rate Ar for transitions from the 4d5d 3D3
level up to Z = 65, but two other states, 4p3/24f5/2 (3) and
4p3/24f7/2 (3), give the dominant contributions for Z > 65.
The 4d5/25s1/2 (3) state about 90% to Ar of the 4d5d 3D3 tran-
sitions for Z = 79 contributes. Such a complicated change of
the dominant contributions is a main source of the sharp fea-
tures in the transition rates for the M3 lines presented on the
bottom panel of Fig. 9.

Transition rates for the eight M2 lines from 4d4f 3P2, 1D2,
3D2, 3F2 and 4d5p 3P2, 3F2, 1D2, 3D2 and 4d4f 3P2, 1D2,
3D2, 3F2 levels to the ground state are plotted in top panel of
Fig. 10.We can see the similarity of these figures with the figures
describing E1 transition rates shown on the top panel of Fig. 9.
For example, the dominant contribution for the transition rates
from the 4d5p 3P2 level arises from the 4d5/25p1/2 (2) state for
Z = 47–56. For high-Z ions, the contribution of this state com-
pletely disappears, but the contribution of the four 4dj 4fj ′ (2)
states (j = 5/2, 7/2, and j ′ = 5/2, 7/2) become significant
for Z = 57–100. The contributions of each of the 4dj 4fj ′ (2)
states change from 50% to 5% with Z. The dominant contribu-
tion for the transition rates from the 4d4f 3P2 level comes from
the 4d5/25p1/2 (2) state for Z ≥ 58. For small-Z ions, the con-
tribution of this state completely disappears, but the contribu-
tions of the two 4d5/24f5/2 (2) and 4d5/24f7/2 (2) states dom-
inate for Z = 50–54; the contributions of the 4d5/25p1/2 (2),
4d3/25p3/2 (2), 4d5/25p3/2 (2), and 4d3/24f5/2 (2) dominate
for Z = 47–49, 55, 56, and 57, respectively. Such a complicated
change of dominant contributions leads to the very sharp fea-
tures for the small-Z ions that we observe for all curves shown
in the left top panel of of Fig. 10.

Transition rates for the three E3 transitions from 4d5p 3F3,
3D3, 1F3 levels to the ground state are plotted in the left bottom
panel of Fig. 10. The dominant contribution for the transition
rates for these three E3 lines changes at Z = 55. For low-Z
ions, the 4dj 5dj ′ (3) states determine the values of Ar , but for
high-Z ions the contribution of the 4dj 4fj ′ (3) states dominates
for the values of Ar for the three E3 4d5p lines. As a result of
this change in the dominant configurations around Z = 55, we
find the sharp features in curves in this region of Z.

Transition rates for the five M1 lines from 4d5s 3D1 and
4d5d 3S1, 1P1, 3P1, 3D1 levels to the ground state are plot-
ted in the right bottom panel of Fig. 10. The deep minima for
Z = 71 in the curve with the 4d5d 3P1 label is explained
by strong mixing between 4d5/25d5/2 (1) 4d3/25d3/2 (1), and
4d3/25d5/2 (1) states. The largest mixing coefficient for the
4d5d 3P1 levels changes at Z = 65, it is the CN [4d3/25d3/2(1)]
for the small-Z ions and CN [4d5/25d5/2(1)] for the high-Z ions.
The CN [4d3/25d5/2(1)] mixing coefficient slowly decreases
from 0.78 for Z = 48 to 0.08 for Z = 71. However, the
Z(1+2)(0 − 4d3/25d5/2(1)) matrix element is larger than the
Z(1+2)(0 − 4d3/25d3/2(1)) and Z(1+2)(0 − 4d5/25d5/2(1)) ma-
trix elements by factors five and three, respectively. As a result,
a competition between three contributions (the product of the
mixing coefficients and magnetic matrix elements) leads to the
deep minimum at Z = 71 in the curve describing transition

rates for the 4d5d 3P1 line presented in the right bottom panel
of Fig. 10.

In Table 8, wavelengths and electric-dipole weighted transi-
tion rates are presented for the nine transitions from the 4d5p,
4d4f , and 4d5f states into the ground state in Pd-like Xe8+,
Cs9+, Ba10+, La11+, Ce12+, and Pr13+. The RMBPT results
are compared with the experimental measurements of Churilov
et al. in refs. 11 and 13. We can see from Table 8 that our
wavelength results are in good agreement (0.1–0.5%) with ex-
perimental measurements, except in the case of the 4d4f states
in Pd-like Xe8+. The case of Pd-like Xe8+ was discussed in
detail previously, and the energies of the 74 states of Pd-like
xenon were presented in Table 7. Our weighted transition rates
gAr for the transitions from the 4d5p, 4d4f , and 4d5f states
into the ground state are compared with gAr given in refs. 11
and 13. Results for gAr agree in most cases, but those gAr do
not agree with the relative intensities given in refs. 11 and 13.
We need additional calculations to build synthetic spectra to
make the comparison with the relative intensities.

In Table 9, wavelengths and multipole (E1, E2, E3, M1,
M2, and M3) transition rates are presented for Pd-like Yb24+,
Hg34+, Th44+, and U46+. We include the 48 multipole transi-
tions from 4d5s, 4d5p, 4d5d, 4d4f , and 4d5f states. Both, jj
and LS labelling of states are given in Table 9. We compare our
RMBPT results for energies with results calculated using the
multiconfiguration Dirac–Fock (MCDF) approach, presented
in ref. 17. The difference between the RMBPT and MCDF re-
sults is about 0.1–0.5%. The largest disagreement (1%) is found
for the 4d5/25p3/2

3P1 level. We find disagreement in identifi-
cation of even-parity states for ions with Z = 80, 90, and 92;
4d5d instead of 4d5s. RMBPT and MCDF results for transition
rates agree to 10–20% for few multipole transitions that were
given in ref. 17, except for one M3 transition.

7. Conclusion

In this paper, we have presented a systematic second-order
relativistic many-body perturbation theory study of excitation
energies, reduced matrix elements, line strengths, and transi-
tion rates for 4d−14f , 4d−15s, 4d−15p, 4d−15d, 4d−15f ,
4p−14f , 4p−15s, 4p−15p, 4p−15d, and 4p−15f electric- and
magnetic-dipole, electric- and magnetic-quadrupole, and
electric- and magnetic-octupole transitions in Pd-like ions with
nuclear charges Z = 47–100. Our calculations of the retarded
E1, E2, E3, M1, M2, and M3 matrix elements include corre-
lation corrections from both Coulomb and Breit interactions.
Contributions from virtual electron–positron pairs were also
included in the second-order matrix elements. Both length and
velocity forms of the E1, E2, and E2 matrix elements were
evaluated and small differences, caused by the nonlocality of
the starting DF potential, were found between the two forms.
Second-order RMBPT transition energies were used to evalu-
ate oscillator strengths and transition rates. Good agreement of
our RMBPT data with other theoretical results is found. Re-
sults from the present calculations provide benchmark values
for future theoretical and experimental studies of the palladium
isoelectronic sequence.
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